Handler、Message、MessageQueue随笔

Handler、Message、MessageQueue随笔

Handler、Message

1、基本用法:

创建Handler重写handlerMessage(Message msg)处理消息

1
2
3
4
5
6
7
8
9
10
11
12
13
14
Handler handler = new Handler(){
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
// TODO 处理消息
}
};
Handler handler = new Handler(new Handler.Callback(){
@Override
public boolean handleMessage(Message msg) {
// TODO 处理消息
return false;
}
});
1
2
handler.sendMessage(msg);
handler.post(new Runnable(){...});

2、主线程默认已经创建Looper,无须重复创建

ActivityThread.java

1
2
3
4
5
6
7
public static void main(String[] args) {
Looper.prepareMainLooper();
...
Looper.loop();
...
throw new RuntimeException("Main thread loop unexpectedly exited");
}

Handler解析

Handler负责把消息放入线程的消息队列中以及分发消息。

1、创建Handler

创建Handler之前需要创建Looper,否则抛出throw new RuntimeException(
“Can’t create handler inside thread that has not called Looper.prepare()”);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/*
* @param callback The callback interface in which to handle messages, or null.
* @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
* each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
*
* @hide
*/
public Handler(Callback callback, boolean async) {
mLooper = Looper.myLooper();// 使用当前线程所在的Looper
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has
not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async; //标志Message是否为异步Message.setAsynchronous
}
/*
* @hide
*/
public Handler(Looper looper, Callback callback, boolean async) {
mLooper = looper; // 为handler指定Looper
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}

2、发送消息到消息队列MesageQueue

Handler中提供了很多个发送消息的方法,其中除了sendMessageAtFrontOfQueue()方法之外,其它的发送消息方法最终都会辗转调用到sendMessageAtTime()方法中

发送消息

(1)boolean sendEmptyMessage(int);
// 发送一条消息到队列,成功返回true,失败返回false,通常是因为Looper已经退出

(2)sendEmptyMessageAtTime(int, long)指定时间发送消息 相对时间
SystemClock.uptimeMillis() + 3000; // 从开机到现在的毫秒数(手机睡眠的时间不包括在内);

(3)通过sendMessageAtFrontOfQueue()方法来发送消息的,它也会调用enqueueMessage()来让消息入队,只不过when为0,这时会把mMessages(MQ头部消息)赋值为新入队的这条消息,然后将这条消息的next指定为刚才的mMessages,这样也就完成了添加消息到队列头部的操作。

(3)
Post Runnable 到消息队列。将Runnable转换为Message

1
2
3
4
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r; // msg的callback指向Runnale
}

3、消息队列中移除消息

移除消息

一般在Activity页面结束时调用handler.removeCallbacksAndMessages(null);
移除队列中所用的callbacks和messages。详见MessageQueue. removeCallbacksAndMessages();

4、消息事件处理

Handler 里面的mLooper所在的线程决定了 handleMessage 方法所在的线程

message的处理比较简单,先判断Message中有没有指定的callback对象(Runnable),有的话就调用callback的run方法,没有则调用我们自己创建Handler对象时实现的handleMessage(Message msg)方法,就这样实现了消息的分发。

1
2
3
4
5
6
7
8
9
10
11
12
13
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
// 处理Runnable消息调用runnable.run();
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}

####5、子线程中创建Handler
在一个子线程中创建Handler时,必须初始化该线程的Looper对象,因为普通的Thread默认是没有消息队列的。

1
2
3
4
5
6
7
8
9
10
11
12
class MyThread extends Thread {
public Handler mHandler;
public void run() {
Looper.prepare();
mHandler = new Handler() {
public void handleMessage(Message msg) {
/* 处理接收到的消息 */
}
};
Looper.loop();
}
}

6、Handler的特点

1.handler可以在任意线程发送消息,这些消息会被添加到关联的MQ上。
2.handler是在它关联的looper线程中处理消息的。
3.一个线程可以有多个Handler,但是只能有一个Looper和一个MessageQueue!

Q?
同一个线程中的所有消息是否共享MQ?
MQ如何分发到不同的Handler处理消息?

A:是
handler.target

Message 解析

Message本身是一个Parcelable对象

Message 可以传递的参数有:

  1. arg1 arg2 整数类型,是setData的低成本替代品。传递简单类型
  2. Object 类型 obj(Parcelable)
  3. what 用户自定义的消息代码,这样接受者可以了解这个消息的信息。每个handler各自包含自己的消息代码,所以不用担心自定义的消息跟其他handler有冲突。
  4. 其他的可以通过Bundle进行传递
    Message可以通过new Message构造来创建一个新的Message,但是这种方式很不好,不建议使用。最好使用Message.obtain()来获取Message实例,它创建了消息池来处理的。

####1、 创建Message

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Message msg = new Message();     (不要这样写)
Message msg = handler.obtainMessage();
Message msg = Message.obtain();
// 这两种方式的区别
public static Message obtain(Handler h) {
Message m = obtain();
m.target = h; // 指定Message的句柄(消息处理者)Handler
return m;
}
/**
* Return a new Message instance from the global pool. Allows us to
* avoid allocating new objects in many cases.
*/
// 从缓存池中构建一个Message,如果sPool为空说明没有缓存的Message,则新建一个
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}

2、Message的回收缓存

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
* Recycles a Message that may be in-use.
* Used internally by the MessageQueue and Looper when disposing of queued Messages.
*/
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
flags = FLAG_IN_USE; // 标示为in_use_flag
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
// 最多可以缓存50个Message
if (sPoolSize < MAX_POOL_SIZE**(50)**) {
// 将缓存的sPool指向当前msg,next指向原有的sPool
next = sPool;
sPool = this;
sPoolSize++;
}
}
}

在一个无限for循环中遍历消息队列,然后调用Handler进行消息分发处理,分发之后调用recycleUnchecked ()把Message对象回收到Message Pool中(最大值为50个,若消息池中已经有50个Message,则不做缓存)

例:
MQ—-> m1,m2,m3; // 未处理的message
m1.recycleUnchecked();

m2.recycleUnchecked();

m3.recycleUnchecked();

Message.obtain();

3、msg. markInUse();

// 标记msg为FLAG_IN_USE,加入MQ时做检查(此状态的msg不能多次加入MQ),调用Message.obtain()清除flags;

4、将一个消息设置为异步

Message.setAsynchronous(Boolean async) // 详见“MessageQueue同步分割栏”

Looper解析

1、Looper.prepare()

1
2
3
4
5
6
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}

创建一个Looper对象,它的内部维护了一个消息队列MQ。注意,一个Thread只能有一个Looper对象,不能多次调用Looper.prepare(),否则将抛出异常。

2、Looper.loop()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public static void loop() {
final Looper me = myLooper(); // 获取当前线程所在 Looper,不能为空
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) { // 循环从MQ中取出消息,没有消息则阻塞
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// 交给相关Handler处理消息
**msg.target.dispatchMessage(msg);**
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
msg.recycleUnchecked(); // 消息回收
}
}

3、Looper.quit() quitSafely();

调用mQueue.quit();

当我们调用Looper的quit方法时,实际上执行了MessageQueue中的removeAllMessagesLocked方法,该方法的作用是把MessageQueue消息池中所有的消息全部清空,无论是延迟消息(延迟消息是指通过sendMessageDelayed或通过postDelayed等方法发送的需要延迟执行的消息)还是非延迟消息。

当我们调用Looper的quitSafely方法时,实际上执行了MessageQueue中的removeAllFutureMessagesLocked方法,通过名字就可以看出,该方法只会清空MessageQueue消息池中所有的延迟消息,并将消息池中所有的非延迟消息派发出去让Handler去处理,quitSafely相比于quit方法安全之处在于清空消息之前会派发所有的非延迟消息。

无论是调用了quit方法还是quitSafely方法只会,Looper就不再接收新的消息。即在调用了Looper的quit或quitSafely方法之后,消息循环就终结了,这时候再通过Handler调用sendMessage或post等方法发送消息时均返回false,表示消息没有成功放入消息队列MessageQueue中,因为消息队列已经退出了。
需要注意的是Looper的quit方法从API Level 1就存在了,但是Looper的quitSafely方法从API Level 18才添加进来。

4、其他方法

getMainLooper() 获取主线程Looper
myLooper() 获取当前线程Looper
getQueue() 获取MQ
getThread() 获取当前Looper所在线程

MessageQueue

MessageQueue是一个按照when大小排列的链表结构。

1、enqueueMessage(Message msg, long when)

同一个没有被处理的message不能多次加入队列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
// 添加消息到消息队列, 最终的mMessages是按照when的由小到大排列
boolean enqueueMessage(Message msg, long when) {
// 检查msg合法性,必须包含handler且非FLAG_IN_USE状态
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) { //如果已经调用MessageQueue.quit, 那么不再接收新的Message
msg.recycle();
return false;
}
msg.markInUse();// msg in_use_flag
msg.when = when;
Message p = mMessages;
boolean needWake;
// 队列为空或msg.when == 0或 msg.when < mMessages.when时
// 将msg直接插入到队列头部
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
// 根据when的大小顺序,插入到合适的位置
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
// 如果在插入位置以前,发现异步消息,则不需要唤醒
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr); //唤醒nativeMessageQueue
}
}
return true;
}

nativeWake,和natePollonce的作用:
  nativePollOnce(mPtr, nextPollTimeoutMillis);暂时无视mPtr参数,阻塞等待nextPollTimeoutMillis毫秒的时间返回,与Object.wait(long timeout)相似
  nativeWake(mPtr);暂时无视mPtr参数,唤醒等待的nativePollOnce函数返回的线程,从这个角度解释nativePollOnce函数应该是最多等待nextPollTimeoutMillis毫秒

2、removeMessage(int what);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
//删除所有what 和obj = object 的msg
void removeMessages(Handler h, int what, Object object) {
if (h == null) {
return;
}
synchronized (this) {
Message p = mMessages;
// Remove all messages at front.
// 循环移除MQ 队列头部所有符合要求的Message
while (p != null && p.target == h && p.what == what
&& (object == null || p.obj == object)) {
Message n = p.next;
mMessages = n;
p.recycleUnchecked();
p = n;
}
// Remove all messages after front.
// 循环移除MQ中间所有符合要求的Message
while (p != null) {
Message n = p.next;
if (n != null) {
if (n.target == h && n.what == what
&& (object == null || n.obj == object)) {
// 移除message并交换位置
Message nn = n.next;
n.recycleUnchecked();
p.next = nn;
continue;
}
}
p = n;
}
}
}

3、Message next()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration 空闲handler数量
int nextPollTimeoutMillis = 0; // MQ阻塞时间
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis); //MessageQueue阻塞nextPollTimeoutMillis 指定时间
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis(); // 开机相对时间(不包含休眠时间)
Message prevMsg = null;
Message msg = mMessages;
// 遇到同步分隔栏,忽略该消息,取下一个 异步消息
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) { // 遇到延迟消息,则阻塞一段时间 nextPollTimeoutMillis
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message. // 得到Message,从MQ里移除此消息
mBlocked = false;
if (prevMsg != null) { // prevMsg != null,说明是同步分隔栏消息,
prevMsg.next = msg.next; // 保留MQ头部为同步分隔栏消息(为了取出下一个异步消息),替换next消息
} else {
mMessages = msg.next; // 不包含同步分隔栏消息,替换当前head为next消息
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
// 线程空闲,计算IdleHandler的数量
pendingIdleHandlerCount = mIdleHandlers.size();
}
// 没有IdleHandler 阻塞队列
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
// 处理IdleHandler部分
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
// 是否需要移除IdleHandler
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}

4、MessageQueue.IdleHandler

1
2
3
4
5
6
7
8
9
10
11
12
messageQueue.addIdleHandler(new MessageQueue.IdleHandler() {
/**
* 返回值boolean 意思是needKeep
* true,表示要保留保留, 代表不移除这个idleHandler,可以反复执行
* false代表执行完毕之后就移除这个idleHandler, 也就是只执行一次
*/
@Override
public boolean queueIdle() {
Log.e(TAG, "-------------->queueIdle 主线程空闲了");
return true;
}
});

5、同步分割栏

也是一个targer = null 的Message

“同步分割栏”是起什么作用的呢?它就像一个卡子,卡在消息链表中的某个位置,当消息循环不断从消息链表中摘取消息并进行处理时,一旦遇到这种“同步分割栏”,那么即使在分割栏之后还有若干已经到时的普通Message,也不会摘取这些消息了。请注意,此时只是不会摘取“普通Message”了,如果队列中还设置有“异步Message”,那么还是会摘取已到时的“异步Message”的。
在Android的消息机制里,“普通Message”和“异步Message”也就是这点儿区别啦,也就是说,如果消息列表中根本没有设置“同步分割栏”的话,那么“普通Message”和“异步Message”的处理就没什么大的不同了

int postSyncBarrier(long when) // 往MQ里加入一个同步分割栏,按照when的大小插入到合适位置
removeSyncBarrier(int token) // 从MQ中移除同步分割栏

6、清空MQ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
void quit(boolean safe) {
if (!mQuitAllowed) { //UI线程的Looper消息队列不可退出 mQuitAllowed = false
throw new IllegalStateException("Main thread not allowed to quit.");
}
synchronized (this) {
if (mQuitting) {
return;
}
mQuitting = true;
if (safe) { // 移除MQ所有的延迟消息
removeAllFutureMessagesLocked();
} else { // 移除MQ中的所有Message
removeAllMessagesLocked();
}
// We can assume mPtr != 0 because mQuitting was previously false.
nativeWake(mPtr); // 唤醒MQ
}
}
// 移除MQ中的所有Message
private void removeAllMessagesLocked() {
Message p = mMessages;
while (p != null) {
Message n = p.next;
p.recycleUnchecked();
p = n;
}
mMessages = null;
}
// 移除MQ所有的延迟消息 n.when > now
private void removeAllFutureMessagesLocked() {
final long now = SystemClock.uptimeMillis();
Message p = mMessages;
if (p != null) {
if (p.when > now) { // 如果队列头部消息为延迟消息,则清空MQ
removeAllMessagesLocked();
} else {
Message n;
for (;;) {
n = p.next;
if (n == null) {
return;
}
if (n.when > now) { // 遍历找到延迟消息,退出循环
break;
}
p = n;
}
p.next = null;
// 清空所有的延迟消息
do {
p = n;
n = p.next;
p.recycleUnchecked();
} while (n != null);
}
}
}

Handler-memory-leak

http://www.androiddesignpatterns.com/2013/01/inner-class-handler-memory-leak.html

参考:

http://bbs.9ria.com/thread-247435-1-1.html
http://www.mamicode.com/info-detail-984722.html
http://www.cnblogs.com/codingmyworld/archive/2011/09/14/2174255.html
http://my.oschina.net/youranhongcha/blog/492591?fromerr=d6t15a3t#OSC_h3_10